
Journal of Thermal Analysis, VoL 12 (1977) 179--185 

M A T H E M A T I C A L  M O D E L L I N G  O F  T H E R M A L  D E C O M P O S I T I O N  
PROCESSES 

G. V~RHEGYI and T. SZt~KELY 

Research Laboratory for Inorganic Chemistry of the Hungarian Academy of Sciences, 
1112 Budapest, Buda/Srsi fit 45, Hungary 

(Received February 26, 1977) 

Some possible elementary reactions are not included in the classical mathematical 
models of thermal decomposition. For example, we can assume that in the thermal 
decompositions of simple carbonates a proportion of the O 2- ions produced on the 
reaction interface can migrate into the interior of the reactant phase, since at this tem- 
perature there is some probability of CO2 exchange between an 0 2 - and a neighbouring 
COa 2 - ion. A similar diffusion-type process can be assumed in a wide class of decompo- 
sition reactions. The present state of computer science makes it possible to show by 
mathematical modelling how this migration influences the TG curves of the simplest 
contracting-sphere-type reactions. The resulting extended contracting-sphere model 
can provide the induction and the acceleration period of the TG curves. 

It  is well known that  several elementary processes take place even in the simplest 
thermal decomposi t ion reactions o f  type 

Asolid "+ Bsoii d + Ggas (1) 

Since these reactions form the basis o f  thermogravimetric analysis, it would 
be useful if, even by approximative mathematical  models, one could show how 
the different elementary processes influence the T G  curves. Though  a great 
number  o f  mathematical  models exist in the literature on thermal analysis [1, 2], 
they do no t  take into account  all possible physical or  chemical elementary pro-  
cesses. Let us consider, e. g., the decomposi t ion o f  a carbonate,  when 0 2. 
ions are produced at the reaction interface. At  the temperature o f  the thermal 
decomposi t ion the following exchange reaction can take place between an O z- 
ion and_.a neighbouring CO 2- ion:  

1 [o 
1 L~ \oJ 2 

It  should be noted that  the cations, having small dimensions, cannot  represent 
significant geometrical hindrances, and the energy barrier o f  the above CO z j u m p  
is probably  smaller than the energy necessary for the decomposi t ion o f  a CO g.  
ion. In this way one can assume that  a considerable propor t ion o f  the 0 2. ions 
produced on the reaction interface appear  in the still unreacted par t  o f  the de- 
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composing material. Formally, this process is analogous to vacancy-type diffusion 
in solids. Similar diffusion-type processes may take place in a wide class of  thermal 
decompositions and can significantly affect the rate of  advance of the reaction 
interface, 

The purpose of  the present work is to show the effects of this diffusion-type 
process in the case when the reaction interface appears on the external surface 
of  the particle and advances from the exterior to the interior. In other words: we 
extend the classical contracting-sphere model by including the above diffusion 
processes. We shall use equations based on physical and chemical evidence to 
describe the advance of the reaction interface and the decrease in the amount of 
undecomposed material. The equations have been solved by a computer for some 
sets of parameters to show that the presented model can provide the induction 
period and the acceleration period of the TG curves. The corresponding numerical 
method is outlined briefly in the Appendix. 

Mechanism and elementary processes 

Since we should like to show as clearly as possible the effects of  the diffusion- 
like processes outlined above, we attempt to reduce the number of other factors 
by treating only those decomposition reactions which 

i) from a chemical point of  view are simple one-step reactions; 
ii) may be characterized by the fact that the product phase appears first at the 

external surface of the particle and the reaction interface advances from the 
exterior to the interior; 

iii) have a smaller product molecular volume than that of the reactant; 
iv) are examined in vacuum and the sample investigated consists of  small 

particles. 

Note that condition ii) is the basic assumption of all contracting-sphere or 
shrinking-core-type models. Condition iii) is statisfied by the majority of thermal 
decomposition reactions [1]. Conditions iii) and iv) are necessary to rule out 
diffusion control; otherwise, the product phase and the gas layer retained in it 
would represent a considerable resistance for the stream of molecules of gas G. 

First of  all, let us examine the decomposition of  a single particle of spherical 
shape. To simplify the treatment, let us divide the particle into hypothetical thin 
cc ncentric layers. The following elementary processes will be considered: 

1. Molecules of gas G can leave the outermost layer and pass directly into the 
vacuum. Here a unimolecular surface reaction is assumed. 

2. Those sites in the reactant phase, from which the molecules of G are absent, 
will be denoted by V in the following. In dehydration processes, for example, 
a ~.ite V corresponds to a real vacancy of a H20 molecule, whereas in the case of 
carbonate decomposition, V is an 02-  occupying the place of a COl-  ion. We 
a~sume, as mentioned above, that a certain proportion of  the sites V migrate from 
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the reaction interface into the reactant phase, since molecules of G bound in any 
form at the neighbouring lattice sites of  the reactant phase can jump into them 
with a certain probability. 

3. As a consequence of  the above two processes, the mole fraction of unde- 
composed material decreases most rapidly in the outermost thin layer of the 
reactant phase. When it achieves a certain critical value here, which will be 
denoted by erupt, the crystal structure of  the reactant phase does not tolerate the 
quantity of  sites V any longer, and the separation of the product phase from the 
reactant phase begins here. The product phase having a smaller molecular volume 
than the reactant (assumption iii)), this process produces different forms of diffu- 
sion short-circuits and other irregularities in this layer, markedly speeding up 
the decomposition here. To obtain a simple mathematical model for the phe- 
nomena, it is supposed that if the mole fraction of undecomposed material reaches 
this critical Crurt value in the outermost thin layer of the reactant phase, this layer 
will d~ccmpose instantly. 

4. As a consequence of assumptions iii) and iv), the decomposed layer does not 
represent a significant resistance to the stream of the molecules of gas G evolved 
now in the lower layers, so these molecules can now pass out into the vacuum 
from the external surface of the next layer. When the mole fraction of undecompos- 
ed material decreases below the critical Crupt value here again, this layer is also 
assumed to decompose instantly. This mechanism continues step by step until 
the decomposition of  the whole particle is accomplished. 

Malhematical model 

Let us denote the molar concentration of the undecomposed material at a given 
point of  the reactant phase by c, which will be a function of  time t and (in particles 
having spherical symmetry) will also depend on the distance from the centre. 
If  this latter is denoted by r, c may be written as c = c(r, t ) .  Its initial value will 
be denoted by c 0. Let R; (i -- 0, 1, 2 . . . .  ) be the actual radius of the reactant 
phase region. The rate per unit area of the surface reaction (v,) will be describ:d 
by the expression 

v~ = k c(Ri,  t )  (3) 

where k is the corresponding specific rate constant. The migration of sites V in the 
reactant phase will be described by Fick's laws. The constant D appearing in 
Fick's laws has the same meaning here as in the case of the diffusion of  real 
vacancies, i.e. D is a quantity proportional to the probability of jumping into a 
site V. The molar concentration of sites V in the reactant phase is c o - c. Fick's 
first law gives the flux per unit area of sites V (VD): 

VD = - - D  grad (c o - c) (4) 

Since sites V are produced by the evolution of  molecules of G at the boundary 
of the reactant phase, v s + vD must be zero here: 

k c(Ri,  t )  - O [grad c o - c(Ri,  t)] = 0 (5) 
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Fick's second law gives an equation for the distribution of sites V in the interior 
of the reactant phase: 

a ( c ~  - Dv2(Co - c) (6) 
Ot 

Note that Eqs (5) and (6) correspond to a boundary problem frequently used 
in the theory of heat conductivity. Theoretically, the mathematical model corre- 
sponding to the mechanism outlined in the previous section is now ready: one 
could solve Eqs (5) and (6) by placing the boundary at R 0 up to t whert c(Ro, t)  
achieves erupt , and continue the solution by placing the boundary at R1 up to 
t when c(RI, t) achieves erupt and so on. When the boundary is at R o, the initial 
condition is c(r, O) = c o. 

However, as regards the thickness of the hypothetical thin layers, it must be 
noted that they should have very small dimensions. This means that this simple 
computational scheme would consist of a very great number of steps. Therefore, 
we need some practical approximation. The simplest way seems to be to assume 
the thickness of the hypothetical thin layers to be infinitesimally small, i.e. to use 
the limit h i = R i _  1 - R i --~ O. 

In this way the computations can be carried out without any difficulties, as is 
briefly outlined in the Appendix. 

Calculated TG curves 

The outlined mathematical model contains the following four parameters: 
k, D, erupt and R o, the initial radius of the particle. In order to have a general 
view of the character of the calculated TG curves, the units of time and length may 

GI 

0.05 unit Time 

Fig .  1. S i m u l a t e d  T G  c u r v e  at k = 1, Ro = 1, c r~t  = 0.8 a n d  D = 0 .25  
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be chosen arbitrarily. In other words: we may choose units for time and length 
such that the values of R 0 and k will be one. To study the dependence of the 
calculated TG curves on the remaining two parameters (D and erupt) we have 
carried out many example calculations. In a wide domain of D values we obtain 
TG curves having induction and acceleration periods. Some of  them are shown 
in the Figures. 

Gi 

0.05 uni t  
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Time 

Fig .  2. S i m u l a t e d  T G  c u r v e  at  k = 1, Ro = 1, erupt = 0 .8  a n d  D = 1 

GA 

O.05unit T ime v 

Fig .  3. S i m u l a t e d  T G  c u r v e  a t  k = 1, R o = 1, crupt = 0 .8  a n d  D = 4 

J. Thermal Anal. 12, 1977 



184 VARHEGYI, SZF, KELY: MODELLING OF DECOMPOSITION 

Possibilities of  further development of  the model 

The present state of computer science would permit the developing and com- 
puting of more complicated mathematical models too. Among others, one could 
apply the present mechanism scheme to non-spherical, non-isotropic crystals. It 
is possible to derive TG curves for samples having non-uniform particle size, and 
it is no problem to estimate the unknown parameters of the model via the least 
squares approximation of  measured TG curves. However, we should like to point 
out that at the time being we do not have the necessary information on the physics 
and chemistry of thermal decompositions to develop mathematical models without 
simplifications and approximative terms. This means that for the time being the 
aim of  the mathematical modelling of the elementary process of thermal decom- 
position can be only to understand the observed TG curves and at most to estimate 
the significance and magnitudes of the different elementary processes. 

Appendix: numerical solution 

Let us write Eqs (5) and (6) in the identical simpler form: 

k c(Ri, t) + D grad c(Ri, t) = 0 (7) 

~c 
- DV 2 c (8) 

Ot 

In polar coordinate system the operator V 2 has a rather complicated form but  
as can be found in the textbooks, if central symmetry exists, Eq. (8) can be written 
in the following simple form: 

~(re) ~2(re) 
- D - -  (9) 

c~t ~ r 2 

Assuming h ~ 0, we shall have the following moving boundary problem: 
"after c has reached the value erupt  at the boundary, the position of the boundary, 
R, begins to diminish in such a way that the relation 

e(R, t) = er~t (10) 

should stand". In other words: we look for those functions c(r, t) and R(t) for 
which Eqs (7), (8) and (9) hold. This problem is a special case of Stephan's problem 
[3]. The numerical solution of a similar problem is treated by Ehrlich [4]. His 
method can be applied here without any significant change. The main points of 
the method are the following: 

As in the case of all finite difference solutions, we compute the values of the 
unknown functions c(r, t) and R(t) only at some discrete points r,- and tj. We 
replace the differential quotients by difference quotients. In this way a system 
of  linear algebraic equations is obtained which is easy to solve. The finite dif- 
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ference analogues of  Eqs (7), (9) and (10) are well known or trivial. We use equi- 
distant points ( r  i - -  r i _  1 = O r )  and choose them in such a way that R 0 should 
be at the centre of a distance &. In the moving boundary period of the decomposi- 
tion we choose tj values such that R(ti+~) - R( t f l  should be about 6r, and R(a')) ~ 
should be near to the centre of  a difference dr. In our opinion the simplest way 
to choose such t~ values is the application of  the forward difference analogue of  
Eq. (9), while the final cj, i values are computed by the more precise C r a n k -  
Nicolson formulae. 
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RI~SUMI~ -- Quelques r6actions 616mentaires possibles ne sont pas prises en compte dans le 
mod61e math6matique classique de la d6composition thermique. On peut, par ex., supposer 
que lots de la d6composition thermique des carbonates simples, une partie des ions 0 2- 
formds ~ l'interface de r6action puisse migrer /t l'int6rieur de la phase r6agissante, puisqu'~t 
cette temp6rature il existe une certaine probabilit6 d'dchange entre un 0 2 -  et un ion CO~- 
voisin. On peut supposer un processus similaire du type diffusionnel chez un grand nombre 
de r6actions de d6composition. L'6tat actuel de la science des ordinateurs permet de montrer, 
~t partir de mod6tes math6matiques, l'influence de cette migration sur les courbes TG des 
r6actions les plus simples du type sph6res de contraction. L'extension du mod61e des sph6res 
de contraction peut indiquer les p6riodes d'induction et d'acc616ration sur les courbes TG. 

ZUSAMMENFASSUNG - -  Einige m6gliche Elementarreaktionen sind in dem klassischen mathe- 
rnatischen Modell der thermischen Zersetzung nicht enthalten. Z. B. kann angenommen wer- 
den, dab bei der thermischen Zersetzung einfacher Carbonate ein Teil der an der Reaktions- 
grenzschicht entstandenen OZ--Ionen in das Innere der reagierenden Phase wandern kann, 
da hei dieser Temperatur eine gewisse Wahrscheinlichkeit eines CO~-Austausches zwischen 
einem O z-  und einem benachbarten CO3~--Ion besteht. Ein /ihnlicber Vorgang vom Dif- 
fussionstyp kann bei einer grogen Gruppe yon Zersetzungsreaktionen angenommen werden. 
Die gegenw/irtige Lage der Komputerwissenschaft erm6glicht an Hand der mathematischen 
Modellierung den Einflul3 dieser Wanderung auf die TG-Kurven der einfachsten Reaktionen 
veto Typ der Kontraktionssph~iren zu zeigen. Das erhaltene erweiterte Kontraktionssph~iren- 
Modell kaHn die Induktions- und Beschleunigungsabschnitte der TG-Kurven liefern. 

Pe3~oMe - -  B KnaccnqecKnx MaTeMaTr~qecKrIX Mo/IeJInx TepM~IqecKoro pa3no~enHn He co~Iep- 
~aJ~p~cL HexoTopbie BO3MOIg, CHBIe 3neMeHTapnbIe peaKtIrtrI. TaK, HanpHMep, MO)I(HO ~oIIyCT!4Tb, 
qTO np//I TepMaqeCKOM pa3J~o~eHH~ rlpOCTblX Kap6oltaTOB ~IaCTB O ~- I / I O H O B ,  o6pa3yrottI~xc~ Ha 
peaxnrIo:-IrIO~ !go~epxHocTI, I pa3~ena, MO~eT MHrp~IpOBaTB BHyTpB p e a r ~ p y ~ e f ~  ~a3~,L 170- 
CXOYtbEy nprt 3TO~ TeMnepaType m~4eeTc~ neKowopaa BO3MO)IgHOCTb 06Mena CO z Me:~/ly 0 2 -  rt 
cocenHrrM CO 2- rmaOM. Mo~ao ~onycraTr~, '~TO no/lo6rI~IR ~nqbqby3rmnm, i~ npottecc BO3MO- 
~ett B IJ~FIpOIgOM ~ a c c e  peaKuHI~ paaYto~reHrt,q. CoBpeMeHI-IM~ ypoBenb BBIqIICfIttTeftbHO/~ TeXHFII<It 
nO3BOYlIteT noKaaart, c noMoin~,m MaTeMaxHqecKoro Mo~leJIttpoBar/!lg KaK~IM o6pa3oM TaKarl 
zvmrpauHa oKa3b~BaeT BJ~I~IHH~e Ha EprlBbIe TF npocre.RmI~X TtlXIOB pea~uafi c C~HMaeMo~ cqbepo~. 
TaKaa MOde.rib pe3yJ~T~tpyroHiefi pacm~ipeHHo-c~HMaeMo~ cqbep~ Mo)KeT ~aBaTB HH,/],yKIlttOHHBIfi 
nep~o~I r~ nepno~I yc~ope~ma KpHBBIX TF. 
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